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INTRODUCTION

In 1874 the Norwegian mathematician Sophus Lie wrote the paper
" Zur Theorie des Integrabilitdtsfaktors " [21], in which he treated
the following problem :

How can the stability of a differential equation under a group

of transformations be used towards its integration ?

The n-parameter transformation groups, which Lie considered, could be
described locally by n real parameters and the group operations were
smooth in these local coordinates. Nowadays these groups are called
Lie groups.

A somewhat simpler object than the Lie group itself is the set of
those vector fields on the Lie group, which are invariant under left
multiplication. They form an algebra under the commutator product
[X,Y] = XY-YX , the so-called Lie algebra of the Lie group. The
bracket [.,.] is bilinear, anti-symmetric and satisfies the Jacobi
identity

[X,0Y,Z11 + [Y,[Z,X11 + [Z,[X,Y]] =0

A fundamental result-of Lie says that a Lie group is locally
completely determined by its Lie algebra.

A unitary representation of a Lie group G on a complex Hilbert
space H is a continuous homomorphism of G into the group of unitary
operators on H. If H' is a closed G-invariant subspace of H, so is
its orthogonal complement, so that H splits as a direct sum of two
subrepresentations. Two representations of G are said to be
equivalent if there exists a linear isomorphism between the
representation spaces, which intertwines the action of G.



A representation is called irreducible if the only closed G-invariant
subspaces are zero and the whole space. One of the major problems in
Lie group theory is :

How to classify all irreducible unitary representations

up to equivalence ?
The set of equivalence classes of irreducible unitary representations
of a Lie group G is denoted by ¢ .

The simplest example is the case of a connected abelian Lie group
A with Lie algebra a. Essentially there are two of them, the
Euclidean space R" and the torus u&J\N: . Each irreducible unitary
representation of A is one-dimensional and of the form

« > mmzxup.ﬁx~<v

with x,y « R" for A= R" and x « R"/Z", y ¢ 7" for A = RY/Z".
In both cases A" can be identified in a canonical way with a subset
of the real vector space v-1.a*. Indeed, for A = R" we have A" =
/-1.a* and for A = R"/Z" we can identify A" with a lattice in v-1.a*,
the weight Tattice of the torus. If we define for x « A the onm1mdo<
T, on rNA>v by

X
T f(y) = f(x+y)

then we get a natural representation of A on rmA>v. Decomposing this
representation into a (continuous) direct sum of irreducible
representations yields the Plancherel formula in the theory of
Fourier integrals and Fourier series respectively.

A Lie group acts on itself by conjugation. Differentiation at the
jdentity yields a representation of G on the Lie algebra g of G, the
so-called adjoint representation. The dual of the adjoint representation
is called the coadjoint representation.

Let K be a connected compact Lie group, for example SU(n,C) or
S0(n,R) . Each irreducible unitary representation m of K is finite

dimensional. The character Xop of m is a complex valued function on K
defined by

quxv = Trace(mn(k))

Similar to the case of finite groups one can show that any irreducible
unitary representation is completely determined up to equivalence by
its character. Choose a maximal torus T in K. The dimension of T is an
invariant, and called the rank of K. The normalizer W of T in K acts
on T by conjugation and on £ by the adjoint representation as a finite
group generated by reflections, the so-called Weyl group of the pair
(K,T). An important fact is that each conjugation orbit intersects T
transversely in aWeylgroup orbit. Being a conjugation invariant
function the character of n is completely determined by its restriction
to T. We write

XmiT T z A sz?v.t
ueT

where the non-negative integer szﬁcv is the multiplicity of | in the
restriction of n to T. For T" we also write s the weight lattice
of T. The elements u of Ao for which saﬁtv is positive, are called
the weights of the representation n. The set of weights of « is
denoted by w(w). A complete classification of K" goes back to
E. Cartan in 1913 [51 :

The set of extremal points in w(n) consists of one single Weyl

group orbit W.x for some ) ¢ Ay and 1 is completely determined

by this orbit. Moreover mm: Weyl group orbit in A, occurs in

this way.
The set of roots A of the pair (K,T) is the set of non-zero weights
of the adjoint representation. They all have multiplicity one, so
that the number of rcots plus the rank of K is equal to the dimension
of K. The root lattice A_ is the sublattice of >svmm:mxwﬁma by the
roots. Fix m/x$¢:<m1¢m:ﬁ inner product on v-1.z* . Then the Weyl



group is generated by the reflections s in the hyperplane <Q
perpendicular to o « A. A Weyl chamber is the closure of a

connected component of the complement of all V. 's in v-1.t* . Fix

a Weyl chamber ¢*. A root o is called positive if (a,8) > 0 for all

B ¢ ¢*, and the set of positive roots is denoted by At Because C*
is a fundamental domain for the action of W on /-1.t* , there exists
for each m ¢ K a unique 1 ¢ ¢t n A, such that the extremal points
of W(m) are just the orbit W.x. We write n(x,K) for m, the so-called
representation with highest weight X.

Let N be a connected nilpotent Lie group with Lie algebra n. In
1962 A.A. Kirillov pointed out that the set z> could be parametrized
by certain orbits of the coadjoint action [18]. The representation
corresponding to an orbit in n* is realized as a certain L?-function
space. The character of the representation which is defined as a
distribution on the group N is equal to the normalized invariant
measure supported by the corresponding orbit. Let M be a connected
closed subgroup of N. By restricting a linear functional f ¢ n*
to m we get a natural projection p of n* onto m*. If an irreducible
unitary representation w of N corresponds to the orbit oj in n*,
then its restriction to M is decomposed into a direct integral of
irreducible unitary representations of the subgroup M corresponding
to the M-orbits which belong to p(0,). This property is called the
functorial property of the orbit method.

It has been remarked by several people that the representation
theory of a connected compact Lie group K can also be decomposed in
terms of orbits of the coadjoint representation. An orbit in k¥
under the coadjoint action is said to be integral for K if the
intersection with #*, which is a Weyl group orbit, is contained in
the weight lattice of T (here we identify t* with v/-1.£*). Then K"
is parametrized by the set of integral orbits in k*. The representation
space can be realized as the set of holomorphic sections in a certain
line vczwdm on this orbit. Moreover, the character can be expressed

Tocally as an orbital integral.
The main problem studied in this thesis is to what extent the
functorial property of the orbit method holds in the compact case.
Therefore let L be a connected Lie subgroup of K. We have
restricted ourselves to subgroups of the same rank, so we may
assume that T is contained in L. We use the subscripts K and L to
distinguish between the corresponding objects of K and L respectively.
For example, zx is the Weyl group of the pair (K,T) and Zr the Weyl
group of the pair (L,T). For x « nﬂﬁ4>s the restriction of n(x,K) to

L splits as a direct sum of irreducible representations m(yu,L) ,
K,L
A

asymptotic behaviour of the integers m

{v). In order to study the

U € nﬂ_4> , with multiplicity m
v K,L
A

(u) as x| tends to infinity,

we introduce in Chapter 3 a piece-wise polynomial function
zmur : /-1.£* — R, which satisfies the relation
K,L

KoL I G
Zﬁy (tp) = t .ay

(u)

+. o+ +. o+ K,L
for t > 0 and r = Ja\p L - 1m:wﬁ>x,/>rv. We call Zy

multiplicity function because of the following theorem.

the asymptotic

Theorem 4. There exists a constant C ¢ %+‘, so that for all

+ ~F
noe Cynaand ue Cpn(n+n ) we have ><.u>§,A
b () R < cure ™
K,L . . K,L
In fact, zy is a sort of continuous analoque of m7 As a
distribution zmwr satisfies a differential equation, which is
analogous to a difference equation for am,r. The multiplicity
function am,r is skew-invariant under a certain affine action of zr.
The function zmur, however, is skew-invariant with respect to the

ordinary action of Zr.
In general one can write K locally as a direct product of a



compact semisimple Lie group and a torus. To simplify the notations
we shall assume that K is semisimple. Let the Euclidean measure du
on v-1.t* be so normalized that the volume of a fundamental bioc

for the root lattice is equal to one. If the polynomial m_on v-1.t*
is defined by =rﬁyv = gﬂbm (asr) 5 then Weyl's integral formula
says that the Euclidean
that for all f « noAqu.m*v

measure dv on v-1.£* can be so normalized

F(v) dv = 2 F(Ad(1)u) d1 d
R %m ()2 | f(ad(1)) 01

In rank one this formula is nothing but a rewriting of an integral
over a Euclidean space by means of polar coordinates. The natural
projection of v-1.k* onto v-1.£* is denoted by p_- Then for a

general point A in v-1.t* the push-forward under PL of the invariant
measure supported by the orbit Ad(K)x is equal to integration against
a Tocally summable Ad(L)-invariant function ox L VoA R. Ve
denote the Weyl dimension polynomials for K m:a L by ax and d

respectively.

L

Theorem 5. For almost all u ¢ V-1.£* we have

In Kirillov's terminology, the canonical measure on the orbit Ad(K).x
has total mass equal to d A ), and similarly for Ad(L)-orbits.

In view of Weyl's Amwmxmd formula the above theorem says that the
push-forward under PL of d:m canonical measure on Ad(K).x is equal

to A:ﬁmmxmﬁAO: over u « o of the om:o:;nmg measure on Ad(L).yn,

with 3 A ) as weight ﬁc:nﬁ403. So z , 1n stead of sm r, is the
nOﬁmeﬁ function in order to obtain ﬁsm functorial property of the
orbit method. For a connected nilpotent Lie group the Jacobian of

the exponential mapping is identically one, which is in general not

true in the compact case. However, the Jacobian of the exponential
map is always one at the identity. This may suggest to look at the
germ of the character at the identity, which is equivalent to the
study of asymptotic behaviour of multiplicities.

In Chapter 4 several examples are treated in detail. In the spegial
case where L is equal to T, it can be deduced from the relation
between the projection of orbits and the asymptotic behaviour of
multiplicities that the projection Uaﬁ>aﬁxvyv is equal to the convex
hull of the Weyl group orbit W.x . This result has been obtained by
B. Kostant several years ago [19]. In Chapter 1 we present a simplified
proof without using representation theory. In Chapter 2 we refine this
proof in order to obtain more insight in the structure of the orbit

spaces.



CHAPTER 1 _ Both theorems are due to B. Kostant [19]. In this chapter we want
to present a fairly easy proof of these theorems. For the proof in

THE CONVEXITY THEOREMS OF KOSTANT section 3 of the infinitesimal case we compute in section 2 the
stationary set (set of critical points) and the maxima of a certain
1.1 Introduction function eI,Io. This function has been introduced before by G.A. Hunt
[15] to prove Cartan's conjugacy theorem p = Ad(K)a.
Let G be a connected real non-compact semisimple Lie group with Lie In section 4 we prove the global case using a function ¢
algebra g. Fix a Cartan involution 6 of g, and let k = {Xeg: 6X=X} and analogous to eIqu. The stationary set of eI,Io is equal to the
p = {Xeg: 6X=-X}. We denote the corresponding Cartan involution of G stationary set of ex.Io. Because the Hessian of eI.Io is more difficult
also by 8. The fixed point group K of s is a connected closed subgroup to handle we reduce the global case by a homotopy argument to the
of G with Lie algebra k. The exponential map is a diffeomorphism from infinitesimal case. The stationary points of 3110 yere First studied
p onto {geG: @@nmuyyv whose inverse is denoted by Tog, and we have the by J.J. Duistermaat, J.A.C. Kolk and V.S. Varadarajan [ 81 to prove
Cartan decomposition G = K exp(p). an asymptotic formula for the elementary spherical functions as the
Fix a maximal abelian subspace a < p and write A = exp(a). Let M be parameter tends to infinity. In order to apply the method of the
the centralizer and W the normalizer of a in K. The Weyl group Wy, acts stationary phase they oosmcmma the stationary set (Lemma 1.5) and the
on A by conjugation and on « by the adjoint representation as a finite Hessian of the function v *"'°. So the proof of Theorem 1 also holds
reflection group. Consider the orthogonal projection p of p onto a with for Theorem 2.
respect to the Killing form B(.,.). The results of this chapter have been obtained foliowing a

suggestion of J.J. Duistermaat and V.S. Varadarajan.
Theorem 1. For each Hy « a the orthogonal projection of the orbit
Ad(K)Hg on a is equal to the convex hull of the Weyl group orbit 1.2 The stationary points and the Hessian of the function ¢">"0.
Ad(W)H,.

Define for H,H; ¢ a the function eI.Io on K by

Choose an ordering on the set of roots A of the pair (g,a). Put

n = oye o where g% = Oeg: [H,X] = a(H)X for all H e a} and Tet N = o1 (k) = B(H.Ad(K)Ho) (keK)
exp(n). According to the Iwasawa decomposition G = KAN we can write
each geG in the form g = kan with keK, acA and neN. The Iwasawa projec- Using the power series expansion of Ad(exp tX) = exp(ad tX) one
tion H : G > a is defined by H(g) = Tog(a). easily sees:
G oMo kexp(X)) 7o = BIA(K™ H,1X,Ho1)
Theorem 2. For each a « A the Iwasawa projection of {kak™!: keK}
. 2 L
is equal to the convex hull of Ad(W)log(a). mww ( eIu;oAx.meAﬁxvv wﬁuo _ wA>an|HvI,mx,Hxv10qu

M- ’

-
B
(-



for k.K, Xck.

For any Lie subgroup G; of G we denote {geG;: Ad(g)H = H} by mq.
The Lie algebra of mq is mq = {Xcgy: [X,H] = 0} where g; is the Lie
algebra of Gj. We write AoHvo for the connected component of G;

containing the identity.

Lemma 1.1 K = z.AxIvo for H ¢ a.
Proof: The Lie algebra of Amzvc is mI AL EI and Amzvo =
Axxvo.manBIv is a Cartan decomposition for AmIvo. Take k « K.

Then >aﬂxlyvm is a maximal abelian subspace of BI. Applying Cartan's
)0 there exists 1 ¢ (K1) with Ad(1.k")a = a,
which implies 1.kt e zz. Because Ad(W) ~ z\z is a finite @10:@
generated by reflections, it is well-known that Ad(W Iv z Iy 1s
generated by those reflections in Ad(W), which stabilize H. But this

group is the Weyl group (W n szvov\z of the space AoI

conjugacy theorem to (G

VO\:AIVOv hence

). Now the lemma follows because k ¢ U

vO
E (ko = mye. o

Lemma 1.2 The set of stationary points of erIo is equal to
H H IoVo

Proof: Because [Hy,Ad(k™ VIH < [p,pl = k, the condition ﬁOﬁ keK
to be a stationary point of eI Ho is equivalent to [Hy,Ad(k™ v ] =
Suppose keK is a stationary point of eIuIOw i.e. ﬁIou>an| JH1 = 0.
By the conjugacy theorem there exists z « xzo such that >QANv>aAleVI
¢ a. Because Ad(K)H n a = Ad(W)H we get Ad(w)Ad(z)Ad(k™)H = H for
some w ¢ W. Hence w.z.k™' « xxv e, ke ko,

Conversely, let k = y.w.z sﬂﬁ: <mxzu well and mezo. Then one can
check immediatdy that [Hg,Ad(k™ vxg = >aAN|HVﬁIOV>QAzuvau =0. @

the set K.k = (Mo .k

For a root o < A we denote <Q = {Hea: o(H) = 0} and S, the
orthogonal reflection in the hyperplane <Q. The complement in a of

10

the <Q_m is a finite union of polyhedral cones, the so-called Weyl
chambers. It is well-known that the closure of a Weyl chamber is a
fundamental domain for the action of the Weyl group on «.

Lemma 1.3 Suppose H;,H, ¢ a. If a(H;)a(H,) > 0 for all o - 4,
then there exists a Weyl chamber C with H,,H, ¢ C.

Proof: Suppose a(H;)a(H,) > 0 for all a ¢ A. Choose a Weyl chamber
C, with H, < C; and Tet DH = {aeA: a(Cy) > 0}. Now we construct C by
induction on the cardinality of ﬁ@mDHN a(Hy) < 031,

If a(Hy) > 0 for all a « DHv we can take C = C;. Otherwise we can
choose a simple root 8 « >w with g(H,) < 0. Because g(H;)a(H,) > O
and a(Hy) > 0, we have g(H;) = 0. Therefore C, = s oH is m Wey] n:macmx
with H; ¢ C,, and for the corresponding positive mkwﬂms DN = mmbH the
cardinality of ﬁgmbwu a(H,) < 0} is one less than the cardinality of

*mew“ a(H,) < 0}. This proves the lemma. @

Lemma 1.4 The following statements are equivalent:

a. emuzo has a local maximum at keK

Iu WelW, mexo and there exists a Weyl

b. k =y.w.z for some ycK
chamber C with H, Ad(w)H, < C.

c. e:vzo has an absolute maximum at keK

Proof:
a = b: Suppose eIqu has a local maximum at keK. By Lemma 1.2 we have

k = y.w.z for some kmxz. weld and mexo. Because eI,Io is left-invariant
under x: and right-invariant under on, w is also a local maximum for
H.H,
) . Therefore

QN IwIO -

ez L0 0(w.exp(tX)) b, = B(AD(w ' )H,[X,[X,H11) 2 0

for all Xek. Choose for every root o « A elements X, « mg with length
normalized by B(X,,6X ) = -1. Substituting for X = >QAE|HVAXQ+OXQV

1



get o(H)a(Ad(w)Hy) > 0, which implies by Lemma 1.3 the existence of a

Weyl chamber C with H, Ad(w)H, ¢ C.

b = c: Suppose we have two points k = y.w.z and k' = y'.w'.z" in K for

some y,y' xI H

» wew' < Wand z,z' ¢ K", such that there exist Weyl
chambers C and C' with H, Ad(w)Hy < C and H, Ad(w')H, < C'. Choose
v = W such that C' = Ad(v)C. Because the closure of a Weyl chamber is

a fundamental domain for the action of W on a, we get fromH ¢« Cn C'

that v « ZI. Then >QA<|HE_VIQ and Ad(w)Hy both lie in C, so >QA<er_vIo
is equal to Ad(w)H,. Hence w' « wowwo . Now eI.IoAr_v = eIquAz_v =
eI.Iosz e eI,IoAxv. In other words, eI,Io has the same value at all

points keK satisfying statement b. Because x\xzo is compact, there

exists an absolute maximum kecK for ex“xo

. Of course, this k satisfies
statement b, so we are done.

c = a: trivial. o

1.3 The infinitesimal convexity theorem.

Fix Hy « a. For a subset V < W we denote by a(Hgy,V) the convex hull
of {Ad(v)Hg: v ¢ V}. In this section we prove the following theorem

Theorem 1. P(Ad(K)Hg) = a(Hy,W) .

Proof: Clearly, it is sufficient to prove the theorem for Hy ¢ a
regular. Fix a boundary point p(Ad(kg)Hg) of p(Ad(K)Hy) for some k; « K.
Then for keK the map k - p(Ad(k)Hy) cannot be a submersion at ky, so

there exists H ¢ a, H # 0, such that mm.ﬁ eI,IoAxo.mandxvv Yizo =0
for all X ¢ k. From Lemma 1.2 we see that k, = y.w for some y « Axxvo
and w ¢ W.

Because K — U xx.z is the complement in K of a finite union

He{a-0}
of submanifolds of positive codimension, it is a dense open subset of

K. On this dense open subset the map k - p(Ad(k)H,) is submersive,
hence p(Ad(K)H,) has dense interior.

12

OQVCﬁwtﬁ(DQP
Hoo .
) s

is trivial,

Now we use induction on the dimension of G. Although (G

reductive, the adjoint action of the om:ﬁm1m0ﬁ Amxvo on mI

m:aﬂ:mﬁmﬁo<mﬁ:mA:a50ﬂ¢03201xmﬁo1 Aozvm. zmom:oo:ndcqm,vk

induction, that UA>aﬁAxIvov>aAvaOV is-equat to ®A>aszxo,sz. Moreover
the rank of the map k - p(Ad(k.w)Hg) is,on a dense open subset of Axxvo,
equal to the rank of DI, where >I = {acA: a(H) = 0} is the root system

H

of the pair (g ,a).

Because p(Ad(K)Hg) has dense interior, each connected component of
a(Hg.W) — U a(Ad(w)Hg "
He{a-0},welW

p(Ad(K)Hy) or has a void intersection with p(Ad(K)Hg).
H

) is either completely contained in

Perturbing the point ky = y.w with y ¢ (K')° and weW , we may assume
that the rank of >I is equal to rank(Aa) - 1 and that the boundary of
p(Ad(K)Hg) is of the form a(Ad(w)Hg W'
p(Ad(kg)Hg).Taking for H the outwards directed normal on the boundary
of p(Ad(K)Hy) at p(Ad(kg)Hy) the function eIon has a local maximum

at kg. Using Lemma 1.4 this local maximum is an absolute maximum, hence
nﬁ>quvIo.zzv must lie in the boundary of a(Hy,W). This proves the

theorem. a

) in a small neighbourhood of

1.4 The global convexity theorem.

For H,Hy, ¢ a we define the function eI,Io on K by

HHo

b k) = B{H,H(exp(Ad(k)Ho))) (keK)

The stationary points of eI,Io are the same as those of eIqu.

Lemma 1.5 The set of stationary points of eI,:o is equal to x:.z.xxo.

Proof: Suppose exp(Ad(k)H,) = kjaj;n; = k;s; with k; ¢ K, a; « A,
n, ¢ Nand s; = ayn;. Then H(exp(Ad(exp(tX).k)Hy) = H(kys,exp(-tX)) =
H(exp(-t.Ad(s)X).sy) = H(a;) + H(exp(-t.Ad(s;)X)) , because A

13



H,Hg

normalizes N, mo * i (exp(tX).k) ¥+uo =0 for all X ¢ b &

0 for all X ¢ k &
H because

B(H,Ad(s1)X) = 0 for all X ¢ k  B(Ad(nT")H,X)
B(Ad(nT')H - H,X) = 0 for all X ¢ k « Ad(n]')H
Ad(nTH)H - H .« .

Since x.manMIOV.xIH = 0(ny v (a Hv .Ny; , we have ny ¢ N e
23; (a1)%.n; « G @ exp(2Ad(k)Hy) ¢ G e [Ad(k)HgsH] = 0 e
ko ko,

o
The next theorem is a glcbal analogue of Theorem 1.

Theorem 2.  H(exp(Ad(K)Hg)) = a(Hg W) .

Proof: Define a homotopy :ﬁ : p - a of projections by

W.IAmvaﬁva for 0 <t <1
e (2) = { )

p(Z) for t = 0
Clearly mﬁ is a continuous homotopy between the Iwasawa projection
and the orthogonal projection. If we define ﬁ:m function eI IoAxv =

mAIvIﬁA>QAvaOV, then the stationary set of eﬁ Mo s equal to ki

In the proof of Theorem 1 we concluded that p(Ad(K)H,) was a subset

of a(Hy,W) and each component of a(Hy,W) — U &A>Qﬂzvxo,zx

) ) ) He{a-0} ,wieW
either completely contained in p(Ad(K)H,) or had a void intersection

with p(Ad(K)Hy). This conclusion was made only by using that xz.z.xxo

H,H . . .
>0, Hence this conclusion is also true

was the stationary set of ¢
for the projections Iﬁ » 0 <t <1, in stead of p. For t = 0 we have
on>QAxVIOV = a(Hp,W) by Theorem 1. The set of t « [0,1] such that
some point in a given component belongs to IﬁA>aﬁvaOV is open using
continuity. It is closed using compactness and continuity. This
implies that IﬁA>QAvaOV = a(Hq,W) for all t ¢ [0,1]. In particular,

H (Ad(K)Hg) = H(exp(Ad(K)Hg)) = a(Hp,W). o

14

CHAPTER 2

A GENERALISATION OF THE CONVEXITY THEOREM

2.1 Introduction.

) was

We use the notation of the previous chapter. Fix a positive Weyl

chamber a* and Tet Ho € n_omAm+v. If G = KAN is the Iwasawa

decomposition corresponding to a+u then we write for g ¢ G:

The subgroup P = xxo>z is a parabolic subgroup of G, and

gP > k(g)k™o kKo & Ad(k)H
6/p > K/ Ho > Ad(K)H,
g gp k - kKo Id
G > K > Ad(K)Hq

is a commutative diagram with in the upper row diffeomorphisms. When
we are speaking of the flag variety, we mean one of these three objects
in the upper row with identifications as above. For example, the
orthogonal projection p of the flag variety on a is the restriction
to Ad(K)H, of the orthogonal projection p : p » a , while A acts on
the flag variety by left multiplication on m\v.

A remarkable fact is that one can define a Riemannian metric on
the flag variety, such that the gradient field of the function eI,Io
is equal to the infinitesimal action of H ¢ a on the flag variety.

This result, explained in section 2, has interesting consequences.

In the first place, it provides a new proof of the Bruhat
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decomposition. Secondly, it shows that the closure of an A-orbit is the
correct object to study the projection from the flag variety on «.
The main result of section 5 is

Theorem 3. The projection p is a bijection from the closure of

an A-orbit >x onto the convex hull of {Ad(w)Hy: Ad(w)Hy « >x¥.

A Schubert variety is the closure of a Bruhat cell. In section 6
we prove that for each Schubert variety S in the flag variety the
A-orbits >x with wx N Ad(W)Hy = S n Ad(W)H, form a dense subset of S.
Together with Theorem 3 this implies that the projection p(S) of a
Schubert variety S is equal to the convex hull of {Ad{w)Hgp: Ad(w)Hy « S}.
This result is a generalisation of Theorem 1.

For a subset V < W we denote by a(H,,V) the convex hull of
{Ad(v)Hg: v e V}. If V = {w} or V = ﬁz.mgsw for some w ¢ W and
a < A, then a(Hy,V) is called a root polytope. By induction on the
dimension of a(Hy,V) we say that for V < W with dim a(Hg,V) > 2
a(Hg,V) is a root polytope if all proper faces of a(Hg,V) are root
polytopes. It is easy to see that for each A-orbit >x on the flag

variety the projection nAmxv is always a root polytope. It seems to
me that the converse is also true.

Conjecture: If V is a subset of W, such that a(Hy,V) is a root
polytope, then there exists an A-orbit >x on the flag variety with

P(R,) = alHg.V).

Finally it should be mentioned that the study of A-orbits is
closely related with the theory of toric varieties in algebraic
geometry [ 6 ,16]. In fact, if G is complex and we consider MA-orbits

in stead of A-orbits, then we get in this way many examples of toric
varieties.
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2.2 A Riemannian metric on the flag variety. ¢v0§3y<44<

Fix Hy € oHOmAm+v. Let P, P97 k be d:m projection onto k along
a + n. Choose for each o ¢ st vectors XQ ¢ g" with length normalized
by B(X »6X ) = -1. If we put E = xW.Axg+®xgv and F_ = -\W.Awgumwgvu
then m@ e Rk, vQ e p and -wAmQ_va = mAwQ,mgv = 1. Moreover [ o, oH =
a(H).F_ for all H ¢ a and UwAva = m@.

Q. . .

Consider the linear map X - UwﬁquoH from k into itself. From what
we said above it is clear that mQ is an eigenvector with eigenvalue
a(Hg). Hence this map is a positive semi-definite symmetric Tinear
map with kernel wzo. In other words, we can define a positive semi-

Lo H
definite symmetric bilinear form R0 on k by

RMo(X,Y) = -B(X,p,,[Y,Ho1)

Ddw b&ﬁ:& - woomiaad .

: H
Because the radical of on is equal to wxo, we can consider R0 also

(X,Yek)

as an inner product on w\wzo. By translation we get a K-invariant

Riemannian metric on the flag variety x\xxo We denote this

Riemannian metric also by R0

For H ¢ a we denote the velocity field of the action of the
1-parameter group t - exp(tH) on the ﬁgm@1<mxémﬁ< m\v by <Iu1m.1
In section 1.2 we introduced a function ¢ *>'0 on K. Because ¢ >0
is 1A@:ﬁ-xzo-ﬂs<wxém:ﬁ, we can consider eIqu also as a function

on the flag variety K/ Hg.

Lemma 2.1 The gradient field of e:uxo with respect to the

- H,H
Riemannian metric RMO s equal to v >0,

Proof: In view of our identifications there is a on@-to-one

correspondence between a 14@:d-x:o|¢:<m1ém:ﬁ function f ¢ C*(K)
v o
and a right-P-invariant function f ¢ C (G).

For k ¢ K we have
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H,Hg Y
(v fi { f(exp(tH).k) wﬁuo

€ F(keexp(t.p, (A(K™IH))) 3, g

QJD. 010. D*D_
=+ + +

{ fk.exp(t.p, (Ad(K™")H))) 34 g

Let v be a smooth map from K into k, such that Ad(kg)v(k.kg) =
v(k) for all k ¢ K, ko ¢ k70
on x\xzo by

. We consider v as a smooth vector field

(vf)(k) = { fk.exp(t.v(k))) }

Q_iD.
s

t=0

o]

where f ¢ C (K) is a 1A@:ﬁ-xxo|¢:<mw*m:ﬁ function. Clearly v(f) ¢ C(K)
Ho

is again right-K'%-invariant. Conversely, each smooth vector field
on x\on is of this form.

Now for k ¢ K we have

H\Ho

(vo > ) (k) = mm‘ﬁ eIquAw.manﬁ.<Axvvv }

t=0
= B(Ad(K™")H,[v(k),Hy])
= -B(

Ho

Here we have used the equality B(Z;,Z,) = -mﬁmﬁwyummva for Z; ¢ p

and Z, ¢ p N at. @

2.3 The Bruhat decomposition.

Let M be a compact Riemannian manifold and ¢ : M= R a smooth
function with finitely many stationary points, SAY X15X25.uusXy-
Suppose that all stationary points are non-degenerate, i.e. the
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Hessian of ¢ at x;,...,x_  1s non-degenerate. Let v be the gradient
field of ¢, and Dy : M > M the corresponding l-parameter group of
diffeomorphisms (teR) . The set S, = {xcM: Tim D (x) = X} is called

to»

the stable manifold of v through x;. The fundamental theorem of the
Morse theory says that each S is a Euclidean cell of dimension equal
to the index of ¢ at x; and It = u S, is a disjoint union. For more
details about Morse theory we refer to Milnor's book [22].

We want to apply this theorem for the flag variety o\n with the
Riemannian metric as defined in section 2.2. For the function on

m\v ﬁmzdmxm eI,Io. By Lemma 2.1 the gradient field mﬁzaxuxo is equal

to v *"0, In order to find the stable manifold of v >0 through w-W,

we choose special coordinates in a neighbourhood of w. For w ¢ Z\ZIO

we consider the nilpotent Lie algebra b, = z g”. The map
a(wHg) <0

by b by - m\w is defined by
#(X) = exp(X).u.P (Xeb,)
The image of y, is denoted by B ,.

Lemma 2.2 B, is an open subset of G/, and y  is a
diffeomorphism of b onto ms.

Proof: Par transport de structure it suffices to prove the lemma for
w is the identity e. Suppose y (X;) = vpo(X,) for X;,X, ¢ bg-
Writing exp(X) = exp(-X;).exp(X;) for some Xcb, , this implies that
exp(X) ¢ P. Because P is normalized by A, we have mxnﬁmﬁ.maﬂxvxv e P

for all He a, t ¢ R.

Fix H e a'. Then 1im mﬁ.maAva = 0, and so mﬁ.maAva lies in the
to o
Lie algebra of P for t sufficiently large, i.e,. mﬁ.maAva Ties in

wxo + a + n for large t. Because of the decomposition g =
b, + wzo + a + n, we see that X = 0, which proves that Ve is injective.
It follows easily that (dy_ )y is injective for all X e @m. Since the
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dimensions of b, and m\v are the same, Aaemvx is bijective for all

X ¢ @m. Now the lemma follows from the inverse function theorem. o]

The next lemma is clear from the definition of the vector
field voo,

Lemma 2.3 The pull-back under y_ of the vector field <IvIo
becomes the linear vector field ad(H) : b, » b,. In particular,

B

w

B, is complete for the flow on m\v corresponding to the vector field <_.7IO

Suppose -H « a". The stable manifold of <I,IO through

W e z\zIo is the N-orbit through w.

Corollary 1

Proof: Clearly the stable manifold of <Iqu through w is a subset
of B,. The condition for X ¢ b, that y, (X) Ties in the stable manifold
of visHo through w is transferred by Y, into Tim et-ad(H)y 0. But

t> o
this is equivalent to X « b,nn . Hence the corollary follows because
the N-orbit through w is equal to b (b n). O

Corollary 2 ( Bruhat decomposition )

G = U
EmZ\ZIo

N.w.P is a disjoint union.

Remark: For Hy regular this decomposition has been obtained by
F. Bruhat for the complex classical groups [4 1. A general proof was
given by Harish-Chandra [10]. The proof we gave above was suggested to
me by J.J. Duistermaat and will also appear in a somewhat different
context in [ 8 ]. The basic idea that Bruhat cells are the stable
manifolds of a gradient vector field is due to R. Hermann [13].

Corollary 3 The set {(by,.y,,B,) W« z\zxow is a coordinate
covering of o\v.
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2.4 Closed convex cones.

Let E be a Euclidean space with inner product (.,.). A subset K of

E is called a cone ( with top 0 ) if for each X ¢ K we have t.X « K
+
for all t ¢ R'.

of K is by definition the dimension of the linear space R.K spanned

From now on K is a closed convex cone. The dimension

by K. It is easy to see that K has non-empty interior relative to R.K.
The relative interior of K is denoted by Relint(K).

Let KY = {XcE: (X,Y) = 0 for all Y ¢ K}. Then KY is again a closed
convex cone, the so-called dual cone of K. A subset F of K is called
a face of K if F = xkﬁdx for some X « KY. Clearly, if K' is a closed
convex cone contained in K and F is a face of K, then FnK' is a face
of K'. Faces are closed convex cones and the intersection of two faces
is again a face. If a face F of K contains a point of Relint(K), then
F = K. A1l other faces of K are called proper faces of K. The
dimension of a proper face of K is less than the dimension of K.

Lemma 2.4 Suppose X « K. Then there exists a unique face F of

K with X ¢ Relint(F).

Proof: Suppose F; is a face of K with X ¢ F;. If all faces F of K,
which contain X, also contain F,, then the lemma is proved. Otherwise
there exists a face F, of Kwith X ¢ Fj but Fy ¢ Fi . Then F, = FyNF;
is a face of K with X ¢ F,, and F, = F, . Repeating this procedure at
the most finitely many times we end up with a face F of K with X e Fy
and all faces F of K, which contain X, also contain F, . o

Lemma 2.5 Suppose ﬁxsuzmzw is a sequence in E such that lim mAx,xzv
exists for all X ¢ K. Then there exist Y ¢ E, Z ¢ KY e

such that

(XX ) _ (X,Y-t.2)

= Jim e

.ﬂlvoo

lim e
n —> o

for all X ¢ K.

21



Proof: Suppose K' = [XK: wwﬁumﬁx,xsv £ 0}. Then K' = R.K'nK,
hence K' is a closed convex cone. Choose X ¢ Relint(K'). Then there
exists a unique face F of K with X ¢ Relint(F). Clearly FNnK' is a
face of K'. Because (FNK')nRelint(K') + @, we have K' = FnK'.

Hence K'cF.

Conversely, let B_(X) be a ball in R.F with radius ¢ > 0 and center

X, such that B.(X) = Relint(F). For X' ¢ FNB.(0) we have

1im mﬁx,xsv = 1im mAx_,x:v.AAs mAxux_,x:v

n-—« n-—>w© n-—o

Clearly all three limits exist. Because the left-hand side is non-zero,
* 0 for all X' ¢ FnB_(0) . Hence B.(0)nF < K' ,

we get 1im mAx ,xnv

n— w

and therefore FcK'. So we have proved that K' = F is a face of K.
Choose Z - KY, such that K' = 7zt nK.
The map X » Tim mAx.xzv

n> o

from K' to R can be extended to a group

homomorphism of R.K' into R'. So there exists Y ¢ R.K' with 1im mﬁxux:v

= elX) for al1 X ¢ RK . o o

For X « K' we have

.

lim e{Xs¥-t.2) XYY Tim o(X:Xp)
.ﬁlv * n—> o«

and for X ¢ K\ K'
pin eV BRI L g i e0Xa)
to o >

2.5 The projection of the closure of an A-orbit.

Fix x ¢ m\n and consider the integral curve of <IuIO through x for

some H ¢ a. We can choose w; ¢ W such that -H « oAOmAbaAszg+v. Using

the Bruhat decomposition G = U zy.z.smy.z.v , We can write x in
EmZ\ZIo

22

the form x = exp(Ad(w, ) X).w.P for some X . n, w « W. Clearly the

t.ad(Ad(wy")H X)

point y = exp{Ad(w;)(1im e 1.w.P is a well-defined

ﬁl.voo

point in o\v. Moreover, y is the unique end point of the integral

curve of <1.Io through x. Similarly, the integral curve of <I,IO

through x has also a unique begin point ( Just take the endpoint
~HLHy through x ).
Consider the A-orbit >x through x. The action of A on mx commutes
H,H

of the integral curve of v

with the vector field v 0, because A is abelian. So we have the

following Temma.

Lemma 2.6 The end points of the integral curves of <T_,IO in >x

form a single A-orbit >< < >x .

Lemma 2.7 As H ranges over a we get in the way of Lemma 2.6 all

of >x as a finite union of A-orbits.

Proof: Suppose z ¢ >x

Since B, is open and A-invariant, we have >x < B,. If we write X =

-1 =1
b, (x) and Z =y

ad(H)

. Choose coordinates (b, .v,,B,) with z < B_.

(z), then Z 1lies in the closure of the orbit

{e X: Hea}. So there exists a sequence {H,,neN} ina with
1im mmaﬁxsvx =Z
N>

For Y « @z we write A(Y) for the set {acA: Y # 0} where ¥ =

b3 Yy with Y, e g%. m&mrm1soxm the convex polyhedral cone
a (wHg) <0 + " N
{ £ ry.a:r, e R }ina is denoted by R A(Y).
acA(Y)
Clearly 1im e24(Mn)x = 7 mpiies that 1im e*(tn) =z 1z,
Nn— o n-—>w

for all o ¢ A(X). By Lemma 2.5 we can choose H,H' ¢ a such that

Tim () o qip @(HHEH) £ a1y 4 o A(X). This proves the
n—> o N> o

lTemma. o
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oy
Lemma 2.8 The function eIgIo has on mw just/one Tocal maximal value.

In fact, z is a local maximum for GI,IO

the A-orbit >< from Lemma 2.6.

Proof: Suppose z « mw is a local maximum for eI,Io on mw. Then
it

_M Aﬁ\w Ammmésﬁ:mogomcmeﬁ
X

(z) = 0 because erIo is monotonically increasing on each non-
constant integral curve of Vst

with 1im x, = z. By Lemma 2.6 the end points y, of the integral

n—>«

curves of <IUIO through x, lie in A . If we choose coordinates

Y
Aozves,m with z <« B, then it follows from the next Temma that
limy =

w M H,H
z. Hence z lies in the closure of A . Moreover ¢ >0 is
N> n Yy
constant on A because vsHo _ g on A . S0 eI,Io has the same value

y y

at all local maxima of erIo 5 This proves the lemma. o

X

. Choose a sequence {x,,neN} in >x

Lemma 2.9 Let V be a Euclidean space, A : V>V a wkaamﬁon>dA:mm1
map and W < V a closed subset invariant under the flow x - mﬁ. (x)
tcR. Suppose z « W, such that there does not exist a non-constant

integral curve in W with begin point z. Then, for each sequence

9

{x_sneN} 1in W with 1im x_ = z , we have
n oo N
Tim { Tim mﬂ.>Ax:v } =2

N— ﬁlvOo

Proof: Suppose the lemma is false. Then there exists ¢ > 0 and a

. . . A
sequence {x,,NneN} in Wwith 1im x, = z , but Wga sup aAmﬁ (Xn)s 2)
> ¢ for all n. Choose t R with aﬁmﬁ:.>ﬁx:vuwvn m.. Clearly
pim by =

We have the decomposition V = vhos <O +V  with >_<+ positive

definite, >_<| negative definite and A Ker(A). For x ¢ V we write

. + + 0

+x- with x7 e v, x0 < v° )

0 , and x™ ¢ V.

x = xT + x

24

ﬁ:.>Ax:v = mﬁ:.>nxﬂv + xm + md:.>Ava is a
bounded sequence in W, hence after choosing a suitable subsequence

. . + 0 . 0 . 0
= Tim exists. Clearl = + with =1limx_ =2z =7z
% :.xukz %z% % % $¢8

n
t.A

The sequence Y, = e

and yt + 0. So the integral curve t » e (y) is non-constant, lies

in W and has begin point z, which contradicts the assumptions. o

Lemma 2.10 The projection of the tangent space T_(A ) to A at x

Proof: {the projection of HxA>wiF B

on a is equal to {Hea: v

tHea: (v Mooy 0y = 0 for a1 B s -
tHea: RTO(H sHo WsHoy oy 20 for a1 H' ¢ ) =
{Hea: Y (x) =0). =o

Theorem 3. The projection p is a bijection from >x onto the

convex hull of {Ad(w)Hy: Ad(w)H; « >xw.

Proof: Use induction on the dimension of A

If dim(A ) = 0, then v'M'o(
Lemma 1.2 we have >x = Ad(w)H, for some w ¢ W. So, in this case, there
is nothing to prove.

X"
x) =0 for all H ¢ a. By Lemma 2.1 and

Now, suppose that dim(A_ ) > 1. Because A is abelian it follows

)
from Lemma 2.10 that cA>xvxmm contained in UAHxA>xvv. Moreover p is
a submersion on >x. o) UA>xv consists of interior points of uﬁqxﬁ>xvv.
The set >x/ >x is a finite union of A-orbits >< of dimension strictly
lower than aﬁaﬁ>xv. By induction cAmwv is a convex polytope for each
A-orbit >< c >x/ >x, Hence Uﬁﬁxv is a compact subset of Uﬁaxﬁ>xvv
with dense interior and bounded by a finite number of convex polytopes,
S0 Uﬁmxv is also a poiytope. If a codimension 1 hyperplane bounds
UA>xv somewhere locally, then by Lemma 2.8 all of UAmxv lies on one
side of that hyperplane. So nAﬁxv is convex as an intersection of

half spaces.
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To prove that p is injective, one has to remark that p maps >x onto
the interior of cAMxv m:a.ﬁx/ A, onto the boundary of Uﬁﬂwv. By
Lemma 2.7 and Lemma 2.8 and induction,p is injective on >x/ >x. On the
other hand, suppose y,z ¢ >x with p(y) = p(z). Choose H ¢ a such that

H>Hy through y and z. Clearly
IL._OA

there exists an integral curve of v

H,H
O(y) = o

is monotonically increasing along non-constant integral curves of
<Iqu

z). So y = z because eI.Io

p(y) = p(z) implies that ¢

m]

2.6 Schubert varieties.

Again we consider the flag variety o\m = Ad(K)H for some fixed
Hy « nd0mA9+v‘ A Bruhat cell is a w.N.w "-orbit on G/p for some w ¢ W,
and the closure of a Bruhat cell is called a Schubert variety . If
G = $1(n,C) and P = G a maximal parabolic subgroup, this generalizes
the classical notion of Schubert variety for the Grassmannian m\n.
We write
Ad(w)H, 2, Ad(w,)H, for w,, w, ¢ Wand o N

Ad(w,)H, = Ad(s w,)H, and o(Ad(w;)Hy) > 0O

Ad(w,)H, = >aAszHvIo and B(H,Ad(w;)H,) > B(H,Ad(w,)Hy)
for all H e a'

Define a partial order < on Ad(W)H, by

Ad(wy)Hy < Ad(wy)H,

A there exist Gpseneaty € >+ such that
=4

e

Q.
Ad(w, )H, — =+ —5 Ad(w,)H,

This ordering is called the Bruhat ordering because of the following
lemma, a proof of which can also be found in [3 ].

26

Lemma 2.11 Ad(w;)H, < Ad(w,)H, if and only if w;.P ¢ Clos(N.w,.P),
where Clos(N.w,.P) denotes the closure of the N-orbit through w,.P
in m\w.

Proof: Suppose Ad(w;)H, < Ad(w,)Hy. It suffices to prove the lemma
if Ad(w; )Hg—2> Ad(w,)Hy for o « a*. Then w,.P ¢ Clos(N.w,.P) follows
from a rank 1 consideration, where the flag variety is a sphere. In
fact, Tim exp(t.X).w,.P = wy.P for all X ¢ g™\ {0}.

to

Conversely, if w;.P ¢ Clos(N.w,.P), then wsHD N.w,.P # §. So, there
mxﬁmﬁw X e Now,.P with Ad(w;)H, « mw. The Temma follows if we can find
a e A" such that Ad(s w,)H, « ux and Ad(w, )Hy - Ad(s w1 )H, .

Suppose, on the contrary, that for no l-dimensional face {t.Ad(w;)H,

+ Apuﬁv>aAmQEHvIo“ tc[0,1]} of the polytope UAHxv we have Ad(w;)H,

— Ad(s,w;)Hy. Then eI,Io_m, has a Tocal maximum at Ad(w,)H, for
X

+ .
all H e a . Applying Lemma 2.8 we get Ad(w,)H,= Ad{w,)H;. =©

Lemma 2.12 The transition functions for the coordinate covering
ﬁAozuez.msv“ weWl of m\v are rational.

Proof: It suffices to prove that y“'ey : b - b is a rational
Sy e e Sq
map for o« a simple root of {geA: g(H;) < O}. Consider the following

diagram

Y oy
U S e -
e = B OMQ
& T
2

( r P )™ —> ( o g g
Bed,B (Hy) <0, id +p BeA,B(Hp) <0,
B*a, B+2a B+a ,B+2a

-1
where o “(X,Y) = Tog(exp(X).exp(Y)) and (X,Y) = Tog(exp(X).exp(Y)).
Because b_ and omg are nilpotent Lie algebras,c and t are polynomial
diffeomorphisms [12].
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Futhermore, o is the transition function in the rank 1 case. Then
. . -1
it follows by SU(2,1) reduction that o is rational [12]. Hence ¥_ v,
. B o
is also rational as a composition of a rational function with

polynomial functions. o

Corollary 1 For each Schubert variety S in m\v there exist A-orbits
A, =S with MX:z.v SAW.P .

Proof: Suppose S = Clos(N.w.P) for some w ¢ W. Then w'.P < S if
. -1
and only if wz_ﬁdz.z.v + () . Because the function ez.oez : ws - oz_
is rational, it is well-defined on a Zariski-open subset of ozo n.
So we can choose x ¢ N.w.P such that Hxﬁgz.v =SNW.P . ®©

Corollary 2 The orthogonal projection of a Schubert variety S

in Ad{K)Hy on a is equal to the convex hull of {Ad(w)Hy: Ad(w)Hy ¢ S}.

Proof: The Schubert variety S consists of those A-orbits >x in o\n
for which Hxﬁdz.w < SNW.P . Hence the proof follows from Theorem 3
and Corollary 1 . o
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CHAPTER 3

ON THE FUNCTORIAL PROPERTY OF THE ORBIT METHOD FOR COMPACT LIE GROUPS

3.1 Introduction.

Let K be a compact connected Lie group and L a connected Lie subgroup
of K of the same rank. Choose a maximal torus T of K which is also
contained in L. The Lie algebras of K, L and T are denoted by k, £
and t respectively. Fix an Ad(K)-invariant inner product (.,.) on k.
This inner product induces a linear isomorphism between L and k*,
which intertwines the adjoint action of K on & and the coadjoint
action of K on k*. We also identify k* with v-1.k* by f-v-1.f for
f ¢ R*. Let Ay © /-1.¢* be the root system of the pair (k,t) ,

DM a fixed positive system, nm = {neV-1.£% (O,a) > 0 for all o ¢ A
the corresponding Weyl chamber, and zx the Weyl group generated by
the reflections s for o « By The root system A< y-1.t* is a so-

called root subsystem of Ay i.e. Dr is a subset of >x satisfying

+
¢

1. aeaA =2 -a ¢ A

L L

2. Qummb_.w@+mmb = a+R € A

K L

We put &7 = A N Ay, Cl = Drev=1.£% © (,a) 20 for all o « &'} and

Zr the subgroup of zx generated by the s, for a « AL -

Let n = {Het: exp(H) = 1} be the unit lattice and A, = {reV-1.t*:
A(H) e 2nv-1.Z for all H « A, the weight lattice of T. The root lattice
A, is the sublattice of A, generated by Ay For a dominant integral
weight x « om n A, we denote by m(x,K) the irreducible representation

of K with highest weight x. The multiplicity function sm,r : nw -
is defined by
K,L
nLK) L = T mt ) (L)
tmmﬂ..
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If we write (irfinitesimally) K = K;...K as a direct product of

simple Lie groups, then L = L,...L_ where Ly Ln xH. Moreover Ay

Dx U oo U by is a disjoint union of irreducible root systems and
1 n . .
p = DrH u ... J Dr where Dr =45 N Dx . We denote the weight lattice
of Dx by >z i ngmmﬁaxu if :m write ) e > in the form x = A+ ...+
with y ¢ A . , then we have
w,1
am“rAcv = 3 EMH,rHAt.V
. 1
i=1 1

So, in order to understand the behaviour of the multiplicity function
we may assume that K is simple and L * K.

In section 4 we introduce for A ¢ nm a piece-wise polynomial
ﬁc:nﬁéo: zmur : V/-1.£* > R, which satisfies the relation zx rA tou) =
¢ ﬂy Atv for t > 0and r = _>x,/>r_ - 1m:xﬁ>x,/>rv . The ﬁc:Oﬁaos
M
ﬁoggozéso theorem.

is called the asymptotic multiplicity function because of the

Theorem 4. There exists a constant C ¢ RY such that for x nﬂ n >z
and u e nﬂ N (x+4,) vie have

K,L K,L

Imieb ) - ) s C.(1+ 1t

We normalize the Euclidean measure du on v-1.t* such that the volume
of a fundamental bloc for the root lattice is equal to 1. The
polynomial m : /-1.t* » R is defined by m (1) u,@m%m (a»21). Then the
Euclidean measure dv on v-1.£* can be so normalized that

[y a = ] m (1) [ fad(1)) 1 d

/o1.2* o Ad(L)
for all f < C.(v-1.£*) . The orthogonal projection from v-1.k* onto
V-1.£% is denoted by PL- In section 5 we prove for zx-xm@cdmx re V-1.1%
the existence of a function ox L : /-1.£% > R , such that
30

[ o ratnn)y o = [ ey ofbe)
Ad(K) V-1.0%
for all f ¢ C(v-1.£%*). Moreover, cx L is an Ad(L)-

“in
summable function on v/-1.£* and ﬁ:m support of ow L is mncmg to

UrA>QAxvyv We denote the Weyl dimension polynomials for Dx and Dr
by a and a respectively.

K, r . K,L

zoz 3 , in stead of ay ., 1s the correct function to handle, in

order ﬁo obtain the functorial property of the orbit method.

variant Jocally

Theorem 5. For » « H:ﬁAnmv we have for almost all y ¢ v-1.t*

4 () M) = delu) o (02080

3.2 Partition functions.

Let p» be a lattice in a Euclidean space E with inner product (.,.).
Suppose S is a finite subset of p, contained in a half-space, i.e. there
exists » ¢ E such that (4,2} > 0 for all @ € S. The set of all Z-valued
functions on & is denoted by V, and <m < V consists of those f € V for

which the support of f is contained in U { x;+ Mm Z .o } for some
yHu...uy: - i=1 [e1a

We define for ¢ < S and » € A the operators

s

D, : V-~V by D f(n) = f(u+a) - (1)
I, u<m.¢<m by If(w) = wmo f{u+ka)
Hy VoV by Aywﬂtv = f(u+})
Yivev by () = f(-u)

The following relations are immediate
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1. UQ_um = _umDQ for a,B ¢ S
2. HQHm = HmHQ for a,6 ¢ S
3. I,D, = D,I, = -Id for o ¢ S
4, ._.V,DQ = UQ.; for o ¢ S, » e A
5. ._.v,HQ = HQHV for o ¢ S, A ¢ A
6. T,fY = (T_,f)Y fornen, feV
7. .;._.t = av,+c for J,u e A

The number of ways to write u ¢ A as a non-negative integral Tinear
combination of elements of S is denoted by UmAtv. The function P is
called the partion function of the set S. For » « A we define €y € v
by e;(n) = 0 if u # ) and e, (2) = 1. If S is empty we put Pg = €g-

Lemma 3.1 Anmv< = (0. I,) o

aeS
Proof: Use induction on the cardinality IS| of S. Choose 8 < S.

Then pg(u) = pg(-u) = X Pg_g(-v-kB) = (Ipg_o)(n). o

[Tl

Lemma 3.2 (-1)'"'( T_D_)ps = pe for T<S

aeT Ps = Um/._.
Proof: This follows immediatdly from Lemma 3.1 and properties 1, 2
and 3. o .

Lemma 3.3 Suppose we have given a function ¢ ¢ V with finite

mcncoxﬁ.H:m:ﬁ:mﬁczoﬁAO:wn yM> o¢yv4ynm ¢mw:mczﬁpcmmOACﬁ¢o:
€
in <m of the difference equation

[S]
-1 n b )f= %
1) AQmm Qv reh nﬁyvmy
Proof: It follows immedia#ly from Lemma 3.2 that f = vm> oAyvayvm

is a solution. In order to prove that the solution is unique in <m“
we introduce a partial order <g on i by

y.,Mmz © tlymN+.m Dl _ummtnyv >0
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Now suppose f,,f, are both solutions. Then g = ﬁpu ﬁm <m is a
[S] _
(g Dy)g = 0.
If x « supp(g) is maximal with respect to the partial ordering ig s

then (-1)">'( n¢ D,)g()

solution of the difference equation (-1)

g(») . Hence supp(g) is empty. o

1

Remark: For A = Z and S = N the function Ps is the classical
partition function. For A the weight Tlattice h, and S the set of
positive roots DM of the pair (K,T) the function Pg was introduced
by B. Kostant [14]. Because we will study the restriction of an
irreducible representation of K to a closed connected subgroup L of

K containing T, we need the function P for S some subset of DM.

3.3 Asymptotic partition functions.

Let 4 be a Tattice in a Euclidean space E and S a subset of s
contained in a half-space. We assume that S is finite, s = ISi and
k = rank(S). Fix a numbering {a;,...,o } for the elements of S. Let
R° be a Euclidean space with standard basis {eg,....e .} and denote
by Z° the integral lattice in R® . The Tinear map >m : R°> E is
defined by )

S
I x.e.) = I x.a,
i=1 i=

5

Because xm1A>mv N Z° is a lattice of rank equal to the dimension of
xm1A>wvv the Euclidean measure on xm1A>mv can be normalized with
respect to this lattice, i.e. by taking the volume of a fundamental
bloc equal to 1. By translation we get for each » ¢ E a well-defined
measure on >WHAVV, which we denote by <ogm .

If we put (R')° = (£ xje;: x; 20 for all i}, then AS'(2) N (R

is a convex polytope of dimension less than or equal to (s -k) . The

vw
function vm : E > R is defined by

Pg(2) = volgIAS(2) N (R')]
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We call vm the asymptotic partition function of the set S. For X < R

and T < S we write X.T for ﬁ.m X 0 X,
1=1 11 1

Q.mﬁmsn_xwuo.:,.ch.mﬁf

1 1

¢ X for all i for which

Lemma 3.4 a. mcuu%mv < R's
b. wm ~ 0 on the interior of the cone R*.S
c. Pe(ta)=t7F Pe(r) for n c E, t >0

Proof:
-1 .

a. Clearly Ac"(3) n (R")® is non empty if and only if A « >m2w+vmv =
+
R .S .

+

b. Because >m maps the interior of (R")° onto the interior of the

+ —_
cone R .S, the polytope >mHAyv n A%+vm has non empty interior
relative to >W9Ayv for A in the interior of the cone R'.S.

c. This follows because AZ'(t.2) n (RN = t{ >WHAyv n (RS

S
for » ¢ E, t > 0. u]

In order to get more insight into the function P. we will use

o . m

induction on s. Choose o ¢ S and let T = S\ {a} . Then o« = a. for

some j, and so we identify RS with ﬁ.mH x;je; ¢ IR®: x5 = 0}.
iZ

There are two possibilities.

Case 1: rank(T) = k-1

Then every A « R*.S can be written uniquely in the form » = u+ ta
with ¢ R™.T and t « RY . The projection q : R® - R°"%, defined
by QAHMH x;e;) = ku x;e;,1s a bijection from >wpﬁyv n Aw+vm onto
>mHAtv n Aw+vmlH . Moreover, the push-forward under g of <ogw is
equal to vol;. Hence vmﬁyv = vaAcv.

Case 2: rank(T ) = k

Take % ¢ R'.S. Define a(a), b(x) « R" by

34

inf (t e RT: a-ta e R.TY

sup {(t ¢ RT: a-ta « R.T}

o
—
> >
—
i 1l

Clearly a(x) and b(x) are continuous piece-wise linear functions on
R*.S . The following formula is obvious

-1 +.s -1 +,s-1
= - nN(R t ]
Ag (x) n (R) .wmxuﬁ LA;7(h - ta) N (RY) ]+ e/
Hence we have
b(x)
1
Pel(n) = = P.(x-ta) dt
S Ny a(n) T

where n, € N 1is the smallest positive integer such that n,-o ¢ Z.7.

Lemma 3.5 The function vm is continuous on R'.S . Moreover, if we
divide the cone R".S into smaller cones by the hyperplanes R.T,
where T ranges over all subsets of S of rank (k-1), then ww is a
polynomial function of degree (s -k) on each of these smaller cones.

Proof: Use induction on s. Choose o ¢ S and let T = S\ {a}. By
induction the lemma is true for va. If rank(T) = k-1, then the results
of the Temma for wa extend to nm in a trivial way. So we assume that
rank(T) = k. Using the integral formula for vm the continuity of vw
on R".S follows immediatdy. In fact, a primitive function of a piece-
wise polynomial function is again piece-wise'polynomial. Because the
lower and upper bound a(x) and b(a) are piece-wise linear on R".S,
the lemma follows. o

Suppose S = mH U mm is a disjoint union of two non empty subsets
such that 1m3wﬁmpv+.1m:xﬁmmv = rank(S). Then each X « R*.S can be
written uniquely in the form X = M+, with Ay € %+.mpm:a A, € %+.mm
It is easy to verify that nmﬁyv = vaAva.vaAywv. We say that vm is
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S

irreducible if there does not exist such a splitting. Otherwise vm is

called reducible. If S ={u} consists of one single element, then P
is equal to the Heaviside- function, i.e. P(ta) = 1 for t > 0 and
vaﬁ@v =0 for t < 0. Clearly the continuity fails for t = 0. On the

other hand, if vm is irreducible and s > 2, then this cannot happen.

S

Lemma 3.6 If rank(S\ {«u}) = rank(S) for each ¢ ¢ S, then nm is
continuous on R.S.

Proof: By Lemma 3.4 and wym it suffices to prove that mm = 0 on the
boundary of R'.S. Fix a Uocmmmﬁk point ) « R*.S . Then there exists
o« S such that a+ta ¢ R7.S for t < 0. If we put T = S\ {a}, then
by assumption rank(T) = s. Applying the integral formula for wm we get
vayv = 0, because a(a) = b(x) = 0. =@

Lemma 3.7 There exists a constant C > O such that

P(r) = C(1+1x)%F

Proof: The Temma follows immediatdy from Lemma 3.5 . o

Denote by nMAmv the space of smooth functions on E with compact
support. Sometimes we will consider vm also as a distribution on E in
the following way

<Pg,f> = \— mm?viiamy
R.S

for f « oMAmv, where the measure amy on R.S s normalized with respect
to the lattice Z.S. In particular, for S the empty set vm is the

§ - function at the origin. By Lemma 3.7 vm is a tempered distribution
on E. The next lemma has to be considered as an equality of
distributions.

Lenma 3.8 ( m S )p. = P for TS
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Proof: By induction it suffices to prove the lemma for T = 5\ {.}
for some o ¢ S. If rank(T) = k-1, then the lemma follows because the
derivative of the Heaviside-function is equal to the s-function. So
we assume rank(T) = k. Using the integral formula for vm we get for

o]

f e onﬁmv

i = - v,
AwQ_umuAmV \ﬁ TmA V B

af

- A
Ja

(x) dt gm

Lo

[
0
1 @ af
- -1 %_{:|C+8v dt dgh

- <P ,f> u]

A:v
o

The next lemma justifies the name asymptotic partien function.

Lemma 3.9 There exists a constant C > 0 such that for x» ¢ Z.S

1pg(r) = Pe(A) 1 < C (1+1nl ysTk-1

Proof: If we denote by z° the standard Tattice in wa, then we
have for a bounded subset D of R%

#(z%nD) < vol {ueR%: d(u,D) < 3/d}

and by taking complements in a suitable cube around D

#(zZ%nD) » vol (ueR%: d(u,RT\D)> 1vd)
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Hence
| #(zZ% n D) - vol(D)I <

vol {ueR¥: d(u,3D) < 3vd}

We apply this to the situation d = s -k, with >WHAyv in stead of %Q,
>WHAyv N Z%in stead of Z%and D >WHAVV n (R*)® for some A ¢ Z.S
Clearly D is a convex polytope and each proper face of D is of the
form >mwﬁyv n Aﬁ+vm, where T is a subset of S with t = [T| and

ITI - rank(T) < s-k-1. Hence the Temma follows from Lemma 3.7 . o

Lemma 3.10 For o ¢ S we have Pg{r-a) = pg(n) - wm/ﬁQwAyv .
Proof: umAyV = # ﬁme Ngeg: Ng e 7", gFg Ng8 = Iy
= # ﬁmmm ngeg: ng ¢ N+., n,=0, oS :mmu A+
# ﬁmm Ngegt Ny € z*, n, 21 aZs :mm» A}
© st MR Ny ¢ L gy MeP AL
# ﬁmQ.Tmmm ngeg: ng e N+, mMm :mm = A-a}

= UwAylgv + UM/meAyv . .

Lemma 3.11 Suppose rank(S\{a}) = rank(S) for each o ¢ S, and let
u e Z.S. Then there exists a constant C > 0, depending on i, such that

| pg(a=u) = Ps(1) 1 = C(1+ a1 )57

Proof: Write u in the form p = Qm m o with ag e Z, such that
0(u) = W55 _BQ_ is minimal. Now we prove the lTemma by induction on
O(u). If O(u) = 0, then u = 0 and the lemma follows from Lemma 3.9 .
So, we assume O{u) > 1. Choose « ¢ S with m, * 0, say m, > 1. If we
put v = p-a , then O(v) = 0(u) - 1. Now we have for » « Z.S

i~

_UmAyntv - vayv_ = _Umﬁyncugv - vmﬁyv_
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_UmAy-<-@v - nmAy-<v_ I
For the first term we get

_Umﬁy-<-gv - umAy-<v_ =

PS\ fa}

_umﬁy-<v - vmﬁyv_

(A-v}l <

P13 (070) = Poy oy )+ TP Do)l s

C,(1+ vl ysTk2

Co(1+ 1l ysk-t

+ nmA 1+ [a-vl

for some oHu C

vm|W|H

2 73

Using the induction hypothesis, we see that the second term is

bounded by C,( 1+ [ 5% for some C, e R .

by taking C = owL.n». u}

* The Temma follows

3.4 Asymptotic behaviour of multiplicities.

We use the notation of section 1. The following Temma is an easy

consequence of Kostant's multiplicity formula [14].

Lemma 3.12 Let 8y = 1 ¥ 4+a and P+

+ the partition function of

(u)

QmDK K/Dr
of the set Dm/>m . Then we have for ) « nm noaand g e nﬂ
mob(w) = E det(w) py r(WOHS) - (s )
A welly AN K K
Moreover, if we extend amurAtv to all x,u « A, by means of this formula,
sw%&_@-@x?v - %iism,fi and am“:it;z-f %253”;

for all w ¢ Exu V ¢ Zr and A,y e >€.

+
Proof: By Kostant's multiplicity formula we have for y ¢ nr n e

and v ¢ A
w
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=i
—
<
~—
H

. zwz_. det(w) UDJ_WA E?i.w_.v - A<+@_.v )

) K,L
= m
cﬁom:>s A Auvat
applying on both sides the difference operator (-1)

K,T
Because ay,

as functions on s We find by
+
1A[

QM_D._*!. DQ that

EMZ_A Qm.nAEV UDM/DMA EAy+a_Av | A<+@_AV vn

b3 m> () w amﬁﬁzvmzAt+arv|arA<v

The assertions of the lemma follow easily from this formula. o

Lemma 3.13 If T is an irreducible root system and Dr# A 2

root subsystem, then N.ADx,/D } s equal to the root lattice A
Proof: Let A = N.Abx/ Drv NAy and b, = lacay: (as8) =0 for

all g « >x/ Drw . Clearly >H and Dm are root subsystems of Dx. We

want to prove that A=A UA,. Because By is irreducible and Ay s

non empty by assumption, this shows that A, is empty, which proves the

lTemma. If o ¢ AN then o « DH and we are done. If g « A and

o d B, then there exists g « A\ A such that (a,8) * 0, say (a,p)

> 0. Hence (a-8) ¢ oy = A>x/>_.v ua - If (a-B) e A then

B = (B-a) + a ¢ A s which gives a contradiction. Therefore (a-g) «

A\ AL and so o = (a-8) + 3 ehd; . ©

Lemma 3.14 Let Ay be an irreducible root system and >rm Ay
root mccmzwﬁm: If d:m pair A>xu>rv is of type A> A |Hv or Awyuowvu
then Dx,/b consists of 1 linear a:amum:am:d 1oo&w In all other

ommmm we have 1m:xﬁbx,/> \{a}) = 1m:xA>x,,>rv for each root o «
D*A/D .

Proof: The first assertion is easy to check. In order to prove the

second assertion we may assume that ALE A is a maximal root subsystem.

However, the pairs ADxVDrv with A, an irreducible root system and
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A g A a maximal root subsystem have been classified by A. Borel and
J. de Siebenthal [ 2 1. Now the proof of the Temma follows by checking
their 1ist case by case. Although this verification is a bit of work,
we leave it out of the text because it does not give much insight into

the problem. o

Let by be an irreducible root mkmﬁms and >r m Ay 2 root subsystem.
We assume that ADxu>rv is not equal to m _1) Am vo ).
For » e v-1. ﬁ* we define the function : : \|H 1* o - U<
zxurﬁtv = ¥y  det(w) v>+ >+Azy =)
A EmZ_A _A/ _|
By Lemma 3.5 and 3.6 the function zx is a continuous piece-wise
polynomial function on v-1.£*. 301mo<m1 :x rAﬁtv ﬁmzx rAcv for

+. o+
t>0andr = Lag\a) | - rank( A />rv

Lemma 3.15 There exists a constant C > 0 such that for a ¢ >s
and ¢ e AFA_we have

K,L
A

EMZ_A_ _u> />+A<,; |t+swx|a_Av - vD.m/DHA wi-u )|

Because &x..z@x is the sum of all roots in DM n EDW we see from
Lemma 3.13 that @x
fulfilled and we get

-ws, ¢ A_. SO the conditions of Lemma 3.11 are

K

\ < zm: C (L+iwa- ul)*”

|A

P:+;_+:_:T
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for some nH > 0.

For |ul < Ial + m_&r_ we have

K,L _uKL r-1
i () Ml < ﬁﬁ%:_%;r:
< C (1)t
for some C - 0.
For |ul = |2] + m_@h_ it is easy to see that amurﬁcv = 0 , which
implies that
_zmvrAcv_ = 3|H._3”Mrﬁscv_ <C :lHC+_3_+_3tCTH

L

for all n ¢ N . Hence zmu . This proves

() =0 for Jul > |xl + 21,
the Temma. o

Lemma 3.16 For all x,u ¢ v-1.£* we have

K,L ) K,L ]
a. zzy (n) det(w) Zy (u) for w e Wy -
b. zmurA<tv = det(v) zm,rAtv for v e W .
K,T _ K,T
c. 3y (wp) = Zy (w) for w ¢ Wy -

Proof: Cearly, part a. is trivial from the definition of M

K,L
L
We shall only prove part b. because the proof of part c. goes exactly
along the same Tines.

For x ¢ >s and p ¢ 1+ >.H we have

KL _ i wol 1,
:y (vp) = www Zy A<t.+mA<@r arvv
B .oy G KL _
= FWH n .zzy A<A3t+@rv &rv
. or KL )
= www no.mo2 A<A3t+arv @rv
= det(v) Tim :lw.sx,rmstv
N ni
= det(v) Tim "t b ()
N>ee
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K,L

= det(v) gy (u)

(ty) = t°.M

Because ngr xwrﬁtv for all t > 0 and [(A,:A,] < =, we get
K,L
A

KoL, o s . oKL

zy, (vu) = det(v) M2 (u) for all a,u « e.>zu and because :v,u (u) is

continuous in x and y the equality holds for all a,u ¢ vV-1.t*. o]
Corollary: Suppose x is singular for z_Au i.e. the stabilizer zw

of A in W, is non trivial. Then zmurﬁtv =0 for all y ¢ V-1.8*% ,

Proof: It is well-known that zw is a subgroup of zx generated by

reflections. Hence the corollary follows from Lemma 3.16 . o

Now suppose Abx,Drv is equal to (A ,A. ) or (B ,D ). Because
+ 4 1°71-1 1’71
lag\a) | = ﬁm:wADM/,Dmvu we have

+
L)

o+ 4
0 for u e Z .AD_A/D_lv

H 1 dno«,tmN+.A>._M/>

and
1 for u e R .(ap\ah)
v>+/>+Atv = % N M ._*..
K 7L 0 for u ¢ R .AD_A/D_uv
We define the function :M,r : V-1.£% > R in this case by
zmurAtv = Tim £ det(w) v>+/>+ﬁsy-t+mAz@x-&xvv
e+0 zmzx K21

K,L

Clearly we have zﬁy

(tw) = 7.0 for all 5 0.

Lemma 3.17 Suppose ADxubrv is of type A>H,>H|Hv or Ampuowv.

For x ¢ Cp N A and weCr n (A4 ) we have
_A 2 _u H
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Proof: We will give a proof of this Temma in section 3 of
chapter 4. o

So we have proved

Theorem 4. Let % be an irreducible root system and A g B a root

subsystem. Then there exists a constant C > 0 such that for

+ +
e Cyn A, and u ¢ nr : Ay.T>av

et - O G)1 < cenn
where r = _DM,/DH_..xm:xADM,/>Mv. The function zmvr is a piece-wise
polynomial on v-1i.t* and satisfies the relation 3erﬁdcv = dw.zmvrmtv

for all t > 0.

From now on Ay is an irreducible root system and AL g bga root
subsystem. We denote by du the measure on v-1.t* normalized with

respect to the root lattice. We will consider the function zmvr also
as a distribution on v-1.£* by
aobes = [t £ @
V1.t

for f ¢ oMA\-H.H*V .

Lemma 3.18 We have the equality of distributions

+. o+
(-1l Mol o s det(w) s
+ 90’ A Wi
QmD_A/D_. Ems_A

Proof: The proof follows from Lemma 3.8 and 3.13 and the

definition of M<sL

) . a

The functions Ty and m_on 1 are defined by

nxAIv = o a(H)
ael
K
erIv = 0, a(H)
aeA
L
for H ¢ . Clearly, Ty is a mwms-zxnﬁs<m1¢m3ﬁ and moa mxms-Zr-
invariant polynomial function.
Lemma 3.19 For a Zr-1m@c4m1 point H ¢ £ we have
m (H)
LS % zmurAtv mcﬁzv du = ¥ det(w) mZyA:v
ﬁ_.AIV V-1.2* wel

K
Proof: The proof follows from Lemma 3.18 by Fourier transformation. o

3.5 The push-forward of a measure.

Let M be an oriented Riemannian manifold of dimension m and dm the
volume form on M. Let p: M - R" be a proper smooth map. We assume
that there exists an open dense subset M' of M such that quAqu_vv =
M' and U_z_ is a submersion. We define a function D : R" - RV as
follows:

For x ¢ R" \ p(M') we put D(x) = 0. If x ¢ p(M') , then UuHAxv is a
compact submanifold of M of dimension (m-n). Due to the Riemannian

structure Ulprv carries a natural measure axﬂsv. Now we put

-1
o) = [ e m) o m)
P (%)
where for m ¢ Ulpﬁxv the Jacobian Jp is defined by Jp(m)= amdAauAstVv

where avﬁavk denotes the restriction of dp(m) to asAUIHAxvvF. Hﬁﬁm

clear that the support of D is equal to p(M') = p(M).
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Lemma 3.20 For f ¢ ooA%:v we have

[ fpm) an = [ (0 D(x) x
M R

In particular, D is a Tocally summable function on R".

Proof: The Temma follows in a standard way by applying the
Jacobi-substitution theorem. o

We want to apply this Temma in the situation that p is the orthogonal

projection PL from £ onto £ and M is the K-orbit Ad(K)H, through some
Hy ¢ £. Unfortunately, in general P fails to be a submersion.
However we have

Lemma 3.21 Suppose k is a compact simple Lie algebra, £ T k a
subalgebra of the same rank, £ = £ a maximal torus and H, a zx-xm@cdm1
point of £. Then there exists a dense open subset M' of M = Ad(K)H,
such that UmpmnrAg_vv =M and P M' - £ is a submersion.

Proof: Because PL commutes with Ad(1) for each 1 ¢ L, the set
crA>QAxVIOV is Ad(L)-invariant. Hence UrA>anvIOV ntis Zr
We say that Y = £ s L-regular if the Ad(L)-orbit through Y has
maximal dimension. It is well-known that Y ¢ £ is L-regular if and

only if Y is sr-xm@cgmﬁu i.e. the Zr|01céﬁ through Y contains

-invarijant.

exactly _zr_ points. Therefore, the L-regular elements of £ form a
non-empty Zariski-open subset of £. Because Ad(K)H, is an irreducible
real variety, the set M" = {XeM: urAxv is L-regular} is a non-empty
Zariski-open subset of M. It is clear that M" is Ad(L)-invariant.

Now we fix X « M" such that urAxv e C". Then aurﬁaxszv is a

L
direct sum of aUrAHxszv ntandT AXVA>aArvurAxvv, and therefore

PL
aUhAHxszv n t is equal to QUHAHXAZVV. Suppose PL is not a submersion
at X. Then we can choose H ¢ £, H * 0, and H perpendicular to

aquaxszv. By Lemma 1.2 we see that X « >QAxIV>QszIo for some w « zxu
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and the convexity theorem implies that wrﬁxv = uaﬁxv lies in the convex

hull of >QAZMV>QAEVIO. By Lemma 3.13 and 3.23 it follows that

MUY= [XeM": PL is a submersion at X} is a non-empty Zariski-open
subset of M. So we can take M' = cmpﬁurﬁzv/ nrAz/z=_vv. o

We can choose a Weyl basis ﬁNQ“ mexw for wg such that

k = £ ¥, RE & =  R.F
ach

. o~ +

where E = Vi.(Z +Z_ ) and F_ = V-1.(Z -7 ). We put H = [E ,F ]
[¢3 =Q ¢4 [¢3 e o a Q
for o « Ay If we take as inner product on k minus the Killing form,

then it is easy to see that

(H,,H) = -v/-1.a(H) for He £, a ¢ Ay
The conjugation map Ik £ - om is defined by
c (X) = Ad(L)X n nm for X « £.

It is well-known that c is smooth on the L-regular points of ¢.

Lemma 3.22 Let H, be a Zrusmmcdmx point of £, and X = X +Aogmg+a
a point of £ n kY. Then we have by
¢ c?+d?
c (Ho#tX) = Hg 5 T . Hy + 0(t?)

acdy AIouIQv

Proof: Clearly the function t - nhAIo+ﬁxv is smooth in a

. _ d _
neighbourhood of t=0, and ‘mmﬁ orAIo+ﬁxv wﬁno = 0.
a@m@-ogm@
If we put Y= X + ¢ £ , then one can easily check that
ach) AIouIQv
ﬁ<uzog = =X .
o@.TaQ
[Y,X] ¢ ¥ D= H,+ X + (R.E +R.F )
aely AIo,IQv aedy a o

Tl

o o
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Now we get

orAIo+ﬁxv orﬁ>aAmxs tY) (Ho+tX))

I

o (Ho+3t 1Y, X140(¢°))
2 c2+d2 3
Ho + 3t° & | 22 Hy, + 0(t”). o
Qm>_| AIO uIQv

Lemma 3.23 Let Hy be a zx-1mmcamx point of %, and let

X= =, ,(cE,+dF ) bea point of k n £ Then
QmD_A/D_u

2 2
c (p (Ad(exp tX)Hg)) = Hg - 3t° X, (cy+dy)(HysH)H, + 0(t%)

Proof: We have

b, (Ad(exp tX)H ) = Hj + tp ([X,H 1) + WﬁNUrAHx“HXVIo_QV + 0(t3)

fm m
H, + 882 p (DXGIXGH 1)+ 0(t%)

hence

nrAcrA>QAmXUﬁvaOVV”Io+wﬁmbqﬁﬁx,ﬁx,xo~gv+oAﬁwv
by Lemma 3.22 , and one easily checks that
pr(DXDGH D) = -3t% = (c2+d2) (HH)H . o

+ T o o
QmD_A/D_.

3.6 The functorial property of the orbit method.

We keep to the notation of the preceding sections. We assume that
k is simple and £ & k. Fix some Ad(K)-invariant inner product (.,.)
on vY-1.k* . We introduce functions Tgs> s ax and ar on v-1.t* by

me(a) = Qu>m (osn) m (3) = Qu>m (as2)

0 . () . (ash)
= —————e vz = —_—

K actf (a.8,) L acal (as6))
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=1 =1
where as before S =z T, @ and ar R
aedy me_.

We denote by dk and d1 the normalized invariant measures on Ad(K)
and Ad(L) respectively. If we denote by dp the Euclidean measure
on v-1.t* normalized with respect to the root lattice, then it is
well-known that the translation invariant measure dv on v/-1.£* can be
so normalized that Weyl's integral formula holds:

J e = 2 [ o [ fmd) o w
/-1.0% E oy g Ad(L)

for all f ¢ noﬁx|p.&*v .

Using Lemma 3.20 and 3.21 there exists a locally summable function
omur : V/-1.£% > R such that

[ ran) ak = [ £ o)
Ad(K) Vo102

K,L
A

for each f ¢ C(/-1.£*) . The function D

is equal to vrﬁ>aﬁxvyv.

c( is Ad(L)-invariant and the
K,L

support of Oy

+

Theorem 5. For x « Int(Cy) we have for almogst all u « V-1.2*

d ) MR = g0 m (02 Dyt (w)

Proof: The proof is based on the following formula of
Harish-Chandra [11]

m() d ) ] @AM g 5 ger(w) W)
Ad(K) welly

We have for zx-smmc_wx He 2

[ QAdOK) g [ oy M) gy -
Ad(K) /-1.2*
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[ A i Ad(L)
. 2 Uxur
- L % L) 07 ) * £ det(w) e (M) W dy
M e d ) ) el
2 K,L
_ _ jrﬁzv D, () mtﬁxv o

\IH.H* n__»Atv ._._._nﬁIv

hence the left hand side of Harish-Chandra's formula becomes

On the other hand, by Lemma 3.19, the right hand side of the formula
of Harish-Chandra is equal to

m, (H)
Ko [ by Mg,
) e

So the theorem follows from Fourier inversion. o

M.H and the

has been remarked by

Remark: For L = T the connection between the function D
N K,T

asymptotic behaviour of the multiplicities m,

V. Guillemin [ 9 1.
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CHAPTER 4

EXAMPLES

4.1 Introduction.

In this chapter we will have a closer look at the relation between

the multiplicity function smur

K,L
A

and the asymptotic multiplicity

function M.”". In section 2 we prove that

J:om c n {wh + 5 __N-.o;:nﬂ

mcuuﬁzm. +
Emzxuzymn_u QmD_A/D_.LQL\;Vvo
In fact, quite often this inclusion seems to be an equality. For
example, if L=T this follows from Theorem 1. Indeed, if g is a
complex semisimple Lie algebra, then multiplication by /-1 intertwines
the adjoint action of K on &k and on p. However, examples show that the
inclusion can also fail to be an equality, e.g. if the pair (K,L) is
of type AwHuUHV or Ammu>mv. For 1=rank(K) =2 these are the only
examples.

In section 3 we consider the case where m only has values 0 and
+l. Using the classification table of Borel and de Siebenthal it fol-

Tows that this can occur only if (K,L) is of type AwH.oHv or A>H,>H|Hv.

K,L
A

These cases are treated in detail.

In section 4 we explain the reduction for (K,L) of type Amm,>wv.
The multiplicity function has an analogous behaviour as the inner
multiplicities for >m. The reason behind this fact seems to be that
A\ B is again a root system of type >m.

In section 5 we conclude this chapter with a discussion on futher
problems.
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4.2 An upper-bound for BMMWP

The following lemma is a consequence of the Poincaré-Birkhoff-Witt
(or PBW) theorem [14].

rmaamp.Wm01ym nm m:QCm nm we have

K,L
ol () < b e Oon)
A D_A/D_.

Proof: Fix a Weyl basis HNQ“QmDMW for we. We define nilpotent

rémmgomc1mm :m. :ﬂ by

oeA ach

For a complex Lie algebra g we denote by U{g) the universal enveloping
algebra of g.

Suppose v is a non-zero highest weight vector for SH in the
representation space V{x,K) of n(x,K) of weight p,i.e.

dn(x,K)(X)v = 0
for all X < n'. Then V' = dn(1,K)(U(ny
:ﬂ-goacgm. Hence, by Engel's theorem there exists vy ¢ V', vy £ 0,
such that

J}v is a finite dimensional

drn(a,K)(X)vy = 0
for all Xe :m. Clearly, v, is the (up to a constant unique) highest
weight vector in V(X,K). Choose Y ¢ :A:Mv such that dn(x,K}(Y)v = vg.
Fix an ordering for the positive roots so that DM,/>H = AQHu...vgmw
and DM = ﬁgm+pv...,gww. According to the PBW theorem we can write
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S
N = “_,~u +
with <H,H umH AN@uv and <H‘m € cA:wv.
+ k
Suppose <H‘m e nH.H.MWDH CASrvNQ and put Z =zc <H‘H . Then

drn(2,K)(Y)v = du(r,K)(Z)v = vq

o s n, 4, 2
with basis { 1T (Z EAE D =
K J qu 521 1,3 %
A=u }. We denote the space of highest weight vectors in V(x,K) for n
by V,. Then the map (Z,v) — dn(a,K)(Z)v defines a pairing between
the vector spaces <H and <m. It follows from what we said above that

this pairing is non-singular on <m. Hence

Let <H be the subspace of U(n

+
L

(n) = &522 < dim(V

) Prta+ (A1)
2 ahat

Lemma 4.2 If w e zx such that zom c om » then we have for all

¥ +
ymnx.tmmr

(1) = p At A+ (Wr=u)
A A AT

Proof: This follows immedia®#ly from Lemma 4.1 if we had chosen

the Weyl chamber zoﬂ c om in stead of nm. m

Corollary 1 For zx-1m@cgm1 Aoe f we have

K,L + -

mccunsy vﬁdor c n L W+ )X Z .a}
zmzxu:ymnr QmDX/DrVAQ.syvvo

Corollary 2 For x ¢ v-1.t* we have

mcvnAzmurv“gnm c n L L+ T R . a}

zmzxvzymnr Qm>x/>rvAQu:yvvo
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4.3 Multiplicity free reduction.

KoL
is either 0 or 1 for all A ¢ nﬂ and | ¢ OH. The following Temma is
due to M. Krédmer [20].

The reduction from K to L is called multiplicity free if m

Lemma 4.3 The following conditions are equivalent:

a. the reduction from K to L is multiplicity free
+ +
b. _>x,/>r_ - 1m3xA>x//>rv = 0
Proof:
a. = b. Clearly, if » is far away from the walls of nm, then smurA

c>+/>+ﬁy-tv for u close enough to x. Hence the partition function
K ML

)

W)

c>+/>+ has only values 0 and 1. It is easy to see that this can happen
KL

+. + +ooRy L
only when _>x,/>r_ - 1w:wA>x/,>hv = 0.

+ + oty
b. = a. Suppose _>x,,>r_ - 1m:xﬁ>x/,>rv = 0. Then UDH/DH has only

values 0 and 1. Hence the Temma follows from Lemma 4.1 . O

A. Borel and J. de Siebethal [2] have given a list up to local
isomorphy of all maximal closed subgroups L of a simple compact
connected Lie group K with rank(K) = rank(L). It is easy to check
from their table that the conditions of Lemma 4.3 are satisfied

only in the cases that the pair (K,L) is of type A>Hu>H1Hv or Amwuowv.

In order to prove Lemma 3,17 we will have a closer look at these
cases. The Dynkin diagrams are

>H : ol O

4 % 11 %1
B. : o ==
1 QH Qm QHlH QH

For Dy of type >H we take A = /i ﬁgpu...vQH;HwﬁJDx , and for Ay of

type wH we take >r =7Z ﬁgpu...vQH|H“QH|H + mgwwﬂdbx . If we put
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, then it is easy to see that Dm,/Dm =

?rwnf . .»@l_

B, = a.+...+a. for i=1,...,1
i i 1

ﬁmHu...umHW. Moreover we have

2(8, 50.) +1  for i=j

— 4 - A -1 for i=j+1

Aguuguv 0 for ixj,Jj+1

Fix a x € nm. Define for i=1,...,1 the numbers :Hn :m € 5+. by
i
2( x uQu..v
n, = ===~

AQH.QHV

For ¢ > 0 we define C(x,e) by

Clhse) = {ug/-1.2%: u=»x - X.B.» O<x,<n +e}

1373 i3

M

Clearly, C(xr,e) is a parallelepiped with vertices i - mmm A:m+mvm s
where S runs over the subsets of DM,,>H. In fact, we have

H 1 if p e C(r,e)

IS ] L
mnnw+/>m L Patap (g (ngre)-n) =y

K 0 if u # OAvaV

We consider the affine action u - zAc+m.@xv- €8y of zx on v-1.t*
with respect to the origin me Sy

Lemma 4.4 The only vertices of C(x,c) which are non-singular for

the affine action of W, on /-1.t* with respect to the origin -c.5,
are exactly the points

W (e 8,) = 6,3 0 nm

(5,

Proof: Let ym = X - me

S < DM,,DH. For j=1,...,1-1 we have

A:m+mvm be a vertex of C(x,e) for some
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LI i pys8y,, S
mﬁymuguv _ A -e if By € S, Biap # S
Aguuguv ”u+.3u+p+.m MM MQ M S, Mump e S
j 3°75+1

Now it is easy to see that the only vertices of C(),e), which are

non-singular for the affine action of Zrzéﬁ: respect to “e.dy, are
for >H oA, A=(n +mvau..., a=(n +mva-...-A: +e)R

1 1 1
+mvm

1
for mw W yuA:H L
We leave it to the reader to verify that these are indeed exactly the

points ﬁzxﬁy+m.®xv - et N oﬂ. 0

Now we put
zx,rﬁtv = ¥ det(w) P+ +(w(rte.s,) - (ute.s,))
, Tt . A\A O T ARTER S
zmzx KM L

Because the mmm@UAAANms zw of u in W_1s also a group generated by
reflections, we have for singular p ¢ /-1.t*

r det(w) = O

EmZW

So the reader will see immediatfly, after having made the above
verifications, that Lemma 4.4 yields

K,L
Ase

()= =, detu).(-1)"!

A= MmA: +mvm+m.@xv-ﬁt+m.axvv

s

Hence for X e oﬂ and | ¢ nﬂ we get

% 1 if ue nAyumv
0 if u £ Clhse)
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1

If we put C(x) = N Clr,e) = {uev-1.2%: u=x~ = x
> j=

then by choosing ¢ = 1 we get =1

O<x.<n.},

umuu =]

Lemma 4.5 For i ¢ om N A, and u ¢ nm n (x+A,) we have
ﬁ 1 ifue C(A)
0 if p ¢ C(n)

On the other hand, if ¢ tends to 0, we get

rmssmh.mmO1ym oﬂ and y ¢ om we have

% 1 if ue C(2)
0 ifu¢C(n)

and so the proof of Lemma 3.17 is complete.
Remark: Lemma 4.5 is known; we refer to [24].

For 1=2 we have drawn pictures of the behaviour of the multiplicity
K,L K,L
A A
non-zero and the stars >k indicate the orbit zxAy+@xv-ax. From these
KoL +

N yn nr :

function m (figures 1,5). The dots e are the points where m is

pictures one can read off the set Urn>aﬁxvyv n nﬂ = supp(M
this is the shaded region in the figures 2 and 6.

From the reduction for (K,L) of type A>m,>pv we get the well-known
behaviour of the inner multiplicities smuqﬂ
K,T
K,T A
Zyu is zero outside the convex hull of zx.y and M

u) for A, (figure 3).

Cleariy the corresponding function M is piece-wise Tinear (figure 4):
KT
A

the inner triangle. In general this method provides another proof

is constant on

of Theorem 1 for complex groups G.
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4.4 The reduction (G ,A,).

In this section we take (K,L) of type Ammv>mv. It has been remarked

K,L
A

by Fronsdal [17] that the multiplicity function m has an

>N-Um:m<AOCﬁ ". We have drawn an example in figure 7. It follows
from Lemma 3.3 and Lemma 3.12 that the multiplicity function amur is

the unique compactly supported solution of the difference equation

=
1l

A-s_%ﬁﬂ_ (om D I det(w)e,

A+S
_A/D_l EmZ_A

§

xvl K

Now it is easy to check that the multiplicity function as indicated
in figure 7 satisfies this difference equation.
From this multiplicity behaviour it follows *asmaémﬂmk that
+ K,L

Urﬁ>aﬁxvyv ne = mcucAzy

L )y n oH is the shaded hexagon as indicated

in figure 8.

4.5 Futher problems .

In this final section we would 1ike to spend a few words on fu€her

problems. First of all about the relation between the supports of
K,L K,L
>~ and M

Ey 5 .

Conjecture: ﬁmcchamur urv n OHW

+ K
) N nrw = ﬁmcuunzy

This conjecture says that, if an irreducible representation mn(u,L) of L
occurs in the restriction to L of an irreducible representation m(),K)
of K, then the orbit Ad(L)u lies in the projection urA>aﬁxvyv. This
conjecture, sometimes called the functorial property of the orbit
method, was one of the main motivations for our work. The corresponding
result for connected nilpotent Lie groups is true and due to Kirillov
[18]. L. Ausiander and B. Kostant [1] have extended the orbit theory
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to connected solvable type I Lie groups, and Shchepochkina [23] has

shown that in this case the functorial property still holds.

+
)N Cl
In general one can prove (along the same lines as section 3.5) that

UrA>anvyv 3 mH Ammnodxjmaﬁma1mm¢o:.301mo<m1,mﬁémcoc:amack
portions of gnzyusﬂv with w ¢ zx and H ¢ t such that the rank of Dﬂ/D

Another problem is to determine explicitly the set mccuﬁzmvr

H
L
one less than the rank of Dx,,Dr. As remarked before the inclusion

+

L c n {wx + by

N R .ain ¢
Emzxuiymnr meﬁ/DruAEyuvio

p_(Ad(K)2x) n C

seems to be quite often an equality. An interesting problem is to find
conditions on the pair (K,L) for which the equality holds. Clearly for
those pairs the conjecture is true. Even where the equality fails in
our examples, we still have that the set UrA>QAxvyv n nm is a convex
polytope. I do not know whether thisconvexity property is true in
general or not.
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figure 3
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figure b
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figure 7

figure 8
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70

SAMENVATTING

Een van de moeilijkste problemen in de theorie van Liegroepen is
om voor een gegeven Liegroep een goede beschrijving te geven van
de equivalentieklassen van irreducibele unitaire representaties.
Voor samenhangende nilpotente Liegroepen kunnen deze equivalentie-
klassen op natuurlijke wijze geparametriseerd worden door zekere
banen in de duale van de Liealgebra. Deze Um:med:oam is functo-
rieel, wat inhoudt dat een irreducibele unitaire representatie

bij beperking tot een samenhangende gesloten ondergroep zodanig
opsplitst als men volgens de projectie van de bijbehorende baan
zou verwachten. Voor andere typen Liegroepen laat de representatie-
theorie zich met wisselend succes beschrijven door dit banen-
formalisme.

In dit proefschrift wordt bekeken in hoeverre deze functoriele
eigenschap doorgaat in het geval van een samenhangende compacte
Liegroep bij beperking tot een gesloten ondergroep van dezelfde
rang. In de eerste twee hoofdstukken worden projecties van banen
bestudeerd los van representatietheorie. In het derde hoofdstuk
wordt aangetoond dat de functoriele eigenschap asymptotisch geldt,
hetgeen in het vierde hoofdstuk aan de hand van een aantal voor-
beelden wordt toegelicht.

CURRICULUM VITAE

De schrijver van dit proefschrift werd geboren op 3 juli 1953 te
Lange Ruige Weide. Na het behalen van het einddiploma gymnasium B
aan het Comenius college te Hilversum, ving hij in 1971 zijn
wiskundestudie te Leiden aan. Hierbij volgde hij colleges van de
hoogleraren dr. W.P. Barth, dr. G. van Dijk, dr. A.J.H.M. Van de Ven,
dr. C. Visser en van dr. J. Simonis. In 1976 legde hij het doctoraal-
examen af.

Sedert 1974 1is hij werkzaam bij het Mathematisch Instituut, eerst
als studentassistent, en na het doctoraalexamen als wetenschappelijk
assistent. In deze Taatstgenoemde functie heeft hij onder leiding
van Prof. dr. G. van Dijk onderzoek verricht op het gebied van de
Liegroepen. Sinds het najaar van 1978 heeft een regelmatig contact
met Prof. dr. J.J. Duistermaat hierbij een stimulerende rol gespeeld.

Hiertoe in staat gesteld door een Z.W.0. stipendium hoopt hij het
komend cursusjaar aan het Massachusetts Institute of Technology te

verblijven.

)Eﬁmmm of the author:

Mathematisch Instituut der
Rijksuniversiteit te Leiden,
Wassenaarseweg 80,

2300 RA Leiden.

for the academic year 1980-1981:
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139,

U.S.A.

7



70

SAMENVATTING

Fen van de moeilijkste problemen in de theorie van Liegroepen is
om voor een gegeven Liegroep een goede beschrijving te geven van
de equivalentieklassen van irreducibele unitaire representaties.
Voor samenhangende nilpotente Liegroepen kunnen deze equivalentie-
klassen op natuurlijke wijze geparametriseerd worden door zekere
banen in de duale van de Liealgebra. Deze Um:mxwd:oam is functo-
rieel, wat inhoudt dat een irreducibele unitaire representatie

bij beperking tot een samenhangende gesloten ondergroep zodanig
opsplitst als men volgens de projectie van de bijbehorende baan
zou verwachten. Voor andere typen Liegroepen laat de representatie-
theorie zich met wisselend succes beschrijven door dit banen-
formalisme.

In dit proefschrift wordt bekeken in hoeverre deze functoriele
eigenschap doorgaat in het geval van een samenhangende compacte
Liegroep bij beperking tot een gesloten ondergroep van dezelfde
rang. In de eerste twee hoofdstukken worden projecties van banen
bestudeerd Tos van representatietheorie. In het derde hoofdstuk
wordt aangetoond dat de functoriele eigenschap asymptotisch geldt,
hetgeen in het vierde hoofdstuk aan de hand van een aantal voor-
beelden wordt toegelicht.
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